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We introduce a new class of nonreflecting boundary conditions for lattice models, which
minimizes reflections at artificial boundaries. Exact integrodifferential boundary condi-
tions for finite chains and half-spaces are obtained by means of Green’s functions for initial
value problems. Truncating the resulting integrals in time, we obtain absorbing boundary
conditions. Numerical tests illustrate the ability of these conditions to suppress reflections.
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1. Introduction

In many physical and biological problems waves propagating in discrete lattices play a key role: motion of dislocations
[21] or cracks [40] in crystalline materials, atoms adsorbed on a periodic substrate [14], motion of electric field domains in
semiconductor superlattices [11], pulse propagation through myelinated nerves [2] or cardiac cells [31]. . .Computing in a
reliable way waves propagating in large oscillator networks is a complex task due to spurious oscillations and pinning. A
common procedure is to truncate the lattice, select some artificial boundary conditions and solve the resulting system of
equations. A poor choice of boundary conditions may change the qualitative behavior of the solutions due to spurious reflec-
tions, as shown in Figs. 1 and 2.

The problem of finding artificial boundary conditions may be formulated in several related, but different, contexts: partial
differential equations with continuous time and space variables, discretizations of partial differential equations, spatially dis-
crete systems which take the form of large systems of ordinary differential equations, and discretizations in time of spatially
discrete systems. In this paper we address the last two frameworks. For the last decades, most work on nonreflecting bound-
ary conditions has focused on wave propagation in continuum media. The interest in deriving nonreflecting boundary
conditions for spatially discrete systems has grown recently, due to the need of simulating atomic or cellular systems in
nanotechnology and bioengineering.

Some spatially discrete models can be seen as spatial discretizations of partial differential equations by the method of
lines. Their discretizations in time may look like discretizations in time and space of partial differential equations. However,
. All rights reserved.
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Fig. 1. (a) Outgoing wave and (b), (c) its true evolution inside the computational domain, governed by a wave equation. Effect of the artificial boundary:
(d)–(f) with periodic boundary conditions and (g)–(i) with absorbing boundary conditions for wave equations. Numerical solutions are computed in a
square lattice using a second order scheme with steps Dt ¼ 0:28 and Dx ¼ 0:5.
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there is an important difference: there is no parameter representing a spatial step which tends to zero. The size of the param-
eters is fixed (except for the time step) and this may change the qualitative behavior of the solutions we want to approxi-
mate, see Figs. 1 and 2. These figures show the evolution of a gaussian when its dynamics is governed by a wave equation
(Fig. 1) and a spatially discrete wave equation (Fig. 2). We are not interested in suppressing the dispersive effects or oscil-
lations generated by the spatially discrete structure, which are not spurious artifacts due to spatial discretization, but fea-
tures inherent to our problem. Moreover, the discrete spatial structure is fixed and cannot be selected to match some
particular boundary conditions.

Three types of boundary conditions are commonly employed in continuum problems. Exact (or transparent) nonreflecting
boundary conditions make the truncated problem equivalent to the full system. If found, they are usually nonlocal and dif-
ficult to implement, see [19,25,22,23] for wave equations. If wave motion arises entirely within the computational domain
and outside it there are no mechanisms causing reflection back inside, the solution near the boundary consists of outgoing
waves. Thus, the artificial boundary condition should simulate an outward radiation of energy. By approximating the kernels
in the exact nonreflecting boundary conditions, we get local absorbing boundary conditions. They are easier to handle but
often give rise to long time instability or ill posed problems, see [19,20,26,41] for acoustic and elastic waves. In general, one
cannot construct nonreflecting boundary conditions unless the behavior of the solution at infinity is known. Alternative radi-
ation boundary conditions based on asymptotic expansions of the far field of the solutions may be proposed, see [6–8] for
wave-like equations and compressible flows. The third possibility consists in introducing a perfectly matched layer outside
the computational domain. This idea works for electromagnetic waves [10] and extensions to fluid problems or elastic waves
have been tried [3,15]. However, instabilities have been reported in anisotropic media [9].

For computational purposes, all the nonreflecting boundary conditions derived for continuum media must be discret-
ized and combined with discretizations of the equations. The dispersion laws of continuous problems and their discret-
ized counterparts being different, most schemes generate some kind of reflection, see [34] and references therein. In
practice, one must find discretely nonreflecting boundary conditions for the discretized equations, which suppress reflec-
tions inside the computational domain generated at the artificial boundaries and also spurious waves originated by the
dispersive nature of the discrete schemes. Different approaches to deriving nonreflecting boundary conditions for fully
discretized wave equations are discussed in [27,28,35]. In [34], exact boundary conditions are found for fully discretized



Fig. 2. Outgoing wave governed by (32) with D ¼ 1 at times t ¼ 5 (a), t ¼ 10 (b), t ¼ 13 (c), t ¼ 15 (d), t ¼ 20 (e) and t ¼ 30 (f). In (a)–(e), the true solution is
indistinguishable from the numerical solution, computed using the second order scheme described in Section 4.1.4 and imposing a truncated nonreflecting
boundary condition on the walls. Parameters are s ¼ 5;M ¼ 5 and h ¼ 0:01. (g) and (h) show the wave at times 15 and 30 for zero Dirichlet boundary
conditions.

A. Carpio, B. Tapiador / Journal of Computational Physics 229 (2010) 1879–1896 1881
linear hyperbolic systems and approximate boundary conditions are proposed for semidiscrete systems. [4] derives exact
boundary conditions for fully discretized wide angle parabolic equations. Transparent conditions for Schrödinger equa-
tions discretized in time are presented in [37] and references therein.

The issue of suppressing reflections at artificial boundaries arises in many other fields, in particular, when studying atom-
ic scale processes in crystalline solids by means of molecular dynamics (MD) simulations. In numerical simulations of nan-
oindentation experiments, for instance, atomic size effects are only relevant at a small region below the tip of the indenter,
where defects are nucleated. MD models are employed in a small region and then truncated at an artificial boundary or cou-
pled with macroscopic descriptions (finite elements typically), see [39] for a survey of techniques. A Green’s function method
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to dynamically couple the two regions by means of a time dependent boundary condition has been developed in [12]. The
response of the outer linear domain is included in the form of a generalized Langevin [1] equation with a convolution integral
over the velocities in the computational domain. The convolution kernel is computed using a MD simulation on a larger do-
main. Nonreflecting boundary conditions for atomic simulations in crystals based on the lattice dynamics Green’s functions
have been proposed in [30]. In [16], an alternative lattice Green’s function based methodology is introduced to evaluate the
dynamical properties of concurrent elastic multiscale models. An artificial nonreflecting interface for lattices is constructed
in [17] by employing time integration formulas that suppress reflections. Their technique is a reformulation of the idea of
absorbing boundary conditions for coupled systems. Other attempts to minimize boundary reflections include viscous ad
hoc damping [29], rely on an approximate description of coupling across a domain boundary [33] or are based on direct min-
imization [18].

In this paper we propose nonreflecting boundary conditions for one dimensional chains of coupled oscillators. The idea is
to express the response of the exterior domain to changes in the computational domain as a non local term in time involving
Green’s functions for spatially discrete initial value problems, that act as memory kernels. The resulting artificial boundary
conditions are exact for linear systems. We suggest a procedure to approximate the time integrals, reducing the computa-
tional cost without generating long time instabilities. This strategy yields effective absorbing boundary conditions, which
involve linear combinations of values of the solution at the boundary points at previous times. Combining with symplectic
solvers for systems of ordinary differential equations, we obtain schemes of order two and four. Numerical tests for harmonic
chains illustrate their ability to suppress reflections.

This idea extends to spatially discrete wave and Klein Gordon equations in higher dimensions and might be exploited for
MD simulations in crystals of arbitrary symmetry. We obtain simple expressions for the Green’s functions of initial value
problems in half-spaces by exploiting the structure of spatially discrete wave equations, which allows for odd extensions
to the whole space. A slight modification allows to formulate exact boundary conditions for vector problems. Previous work
on crystals governed by vector lattice models [30] used the lattice Green’s functions. This resulted in more complex closures,
kernels and algorithms. In spatially discrete wave equations, for instance, our strategy avoids inverting Laplace transforms.
For finite boxes we construct approximate boundary conditions truncating the exact boundary conditions for half-spaces,
which produces good numerical results.

For scalar problems set in simple geometries, we may draw an analogy with the Dirichlet-to-Neumann technique [23,24]
for wave equations. Known the boundary values for a time dependent problem set in a half-space, we find a formula for the
values at a neighboring interface, which allows to close the system. As a subproduct, expressions for discrete versions of nor-
mal derivatives in terms of time integrals of the values at the boundary follow. In vector problems the analogy is lost: at each
fixed time our formulas involve not only known values at the boundary, but also values at the neighboring interface for pre-
vious times. In general crystals we work with non orthogonal coordinates. It becomes pointless to look for connections with
derivatives.

The paper is organized as follows. In Section 2 we obtain the exact boundary conditions for a one dimensional lattice.
Section 3 describes some numerical tests. In Section 4 we extend the method to higher dimensions. Finally, Section 5 pre-
sents our conclusions.

2. Nonreflecting boundary conditions in one dimension

We consider a one dimensional chain obeying the dimensionless equations:
Mu00n ¼ V 0ðunþ1 � unÞ � V 0ðun � un�1Þ �W 0ðunÞ; n 2 Z: ð1Þ
Here, un represents the dimensionless displacement of the n-th atom with respect to its equilibrium position. M > 0 is its
dimensionless mass. V is the interatomic potential and W the on-site potential. Possible defects are concentrated in the re-
gion jnj � N. Near N, we may linearize (1) to obtain:
u00n ¼ Dðunþ1 � 2un þ un�1Þ � Aun; D ¼ K1

M
; A ¼ K2

M
> 0: ð2Þ
If A ¼ 0, (2) is a spatially discrete wave equation. If A > 0, we have a spatially discrete Klein–Gordon equation. We locate
an artificial boundary at jnj ¼ N and seek an exact boundary condition for (2). This means that solving the inner problem in
jnj 6 N with that boundary condition produces the same result in the inner region as solving (2) everywhere. Exact boundary
conditions for (2) become approximate boundary conditions for (1) due to linearization. The first step in deriving our bound-
ary conditions is to compute the Green’s function for linear initial value problems.

2.1. Green’s functions

We want to find an integral representation of the solution of the problem:
u00n ¼ Dðunþ1 � 2un þ un�1Þ � Aun þ fn; ð3Þ
unð0Þ ¼ u0

n; u0nð0Þ ¼ u1
n; ð4Þ
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with D ¼ K1
M ; A ¼ K2

M > 0. Firstly, we get rid of the difference operator by using the generating functions pðh; tÞ; f ðh; tÞ:
pðh; tÞ ¼
X

n

unðtÞe�inh; f ðh; tÞ ¼
X

n

fnðtÞe�inh: ð5Þ
Differentiating p with respect to t and using (3), we see that p solves the ordinary differential equation:
p00ðh; tÞ þxðhÞ2pðh; tÞ ¼ f ðh; tÞ; xðhÞ2 ¼ 4D sin2 h
2

� �
þ A: ð6Þ
Initial conditions for p follow from those for un. The solution p of (6) depends on the roots of the polynomial r2 þxðhÞ2 ¼ 0:
pðh; tÞ ¼ pðh;0Þ cosðxðhÞtÞ þ p0ðh;0Þ sinðxðhÞtÞ
xðhÞ þ

Z t

0

sinðxðhÞðt � sÞÞ
xðhÞ f ðh; sÞds; ð7Þ
and unðtÞ is recovered inverting the discrete Fourier transform:
unðtÞ ¼
Z p

�p

dh
2p

einhpðh; tÞ: ð8Þ
Formula (8) can be rewritten as:
unðtÞ ¼
X

k

GnkðtÞu0kð0Þ þ
dGnk

dt
ðtÞukð0Þ

� �
þ
Z t

0

X
k

Gnkðt � sÞfkðsÞds ð9Þ
where
GnkðtÞ ¼
Z p

�p

dh
2p

eiðn�kÞh

xðhÞ sinðxðhÞtÞ: ð10Þ
Green’s functions for hamiltonian chains were computed by Schrödinger in [38]. Their properties are analyzed in detail in
[5]. Dissipative chains are studied in [13]. Convergence of the sums in (9) follows from the spatial decay of the Green’s func-
tions. Integrating by parts in (10) and using the periodicity of eiðn�kÞh we see that Gnk decays like jn� kjp for any p > 1. Notice
that xðhÞ being even with respect to h, the Green’s function (10) is real.

2.2. Exact nonreflecting boundary conditions in a half-space

We wish to solve (2) for n P 0, placing an artificial boundary at n ¼ 0. Thus, we need a boundary condition to compute
u0ðtÞ. In principle,
u000 ¼ Dðu1 � 2u0 þ u�1Þ � Au0 þ f0; ð11Þ
but u�1ðtÞ is unknown unless we solve (2) for n 6 0 with boundary data u0ðtÞ at n ¼ 0 and compute u�1ðtÞ. Below, we describe
a strategy to obtain an explicit expression for u�1ðtÞ. Let us rewrite (3) at n ¼ �1 as:
d2u�1

dt2 ¼ Dð0� 2u�1 þ u�2Þ � Au�1 þ f�1 þ Du0: ð12Þ
Assuming we know u0ðtÞ, the problem (3)–(4) for n 6 0 with boundary condition u0ðtÞ can be extended to the whole space
setting:
vn ¼
�u�n n > 0;
0 n ¼ 0;
un n < 0:

8><
>: ð13Þ
The extension vn solves:
v 00n ¼ Dðvnþ1 � 2vn þ vn�1Þ � Avn þ gn;

vnð0Þ ¼ v0
n; v 0nð0Þ ¼ v1

n;
ð14Þ
for all n, where v0
n and v1

n are odd extensions of u0
n and u1

n defined as in (13). The source gn is obtained extending fn þ Ddn;�1u0

in a similar way:
gn ¼
�f�n n > 1; �f�1 � Du0 n ¼ 1;
0 n ¼ 0;
fn n < �1; f�1 þ Du0 n ¼ �1:

8><
>: ð15Þ
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Notice that we have included the boundary condition u0 as a force acting on v�1 ¼ u�1 to allow for an odd extension with
zero boundary condition v0 ¼ 0. Using (9) and the symmetry of the data:
unðtÞ ¼ vnðtÞ ¼
X
k<0

GnkðtÞu0kð0Þ þ
dGnk

dt
ðtÞukð0Þ

� �
þ
Z t

0

X
k<0

Gnkðt � sÞðfkðsÞ þ Ddk;�1u0ðsÞÞds; n < 0; ð16Þ
where Gnk ¼ Gn;k � Gn;�k is the Green’s function for the half space n < 0 with zero boundary condition at n ¼ 0. The desired
formula for u�1 follows:
u�1ðtÞ ¼ r�1ðtÞ þ D
Z t

0
G�1�1ðt � sÞu0ðsÞds;

r�1ðtÞ ¼
X
k<0

G�1kðtÞu0kð0Þ þ
dG�1k

dt
ukð0Þ þ

Z t

0
G�1kðt � sÞfkðsÞds

� �
:

ð17Þ
The term r�1ðtÞ represents the contribution of the data in the outer region. Our boundary condition at n ¼ 0 takes the form:
u000 ¼ D u1 � 2u0 þ D
Z t

0
G�1�1ðt � sÞu0ðsÞds

� �
þ Dr�1 þ f0; ð18Þ
where the kernel is:
G�1�1ðtÞ ¼
Z p

�p

dh
2p

1� e�2ih

xðhÞ sinðxðhÞtÞ ¼
Z p

�p

dh
2p

1� cosð2hÞ
xðhÞ sinðxðhÞtÞ: ð19Þ
2.3. Exact boundary conditions for a finite chain

Let us truncate our computational domain to a finite chain jnj 6 N. We wish to impose nonreflecting boundary conditions
at n ¼ �N. Using the results derived in the previous section, we would set:
d2u�N

dt2 ¼ D u�ðN�1Þ � 2u�N þ D
Z t

0
G�1�1ðt � sÞu�NðsÞds

� �
þ Dr�ðNþ1Þ þ f�N; ð20Þ

u�ðNþ1ÞðtÞ ¼ r�ðNþ1ÞðtÞ þ D
Z t

0
G�1;�1ðt � sÞu�NðsÞds;

r�ðNþ1ÞðtÞ ¼
X

N�k<0

G�1;k�NðtÞu0kð0Þ þ
dG�1;k�N

dt
ukð0Þ þ

Z t

0
G�1;k�Nðt � sÞfkðsÞds

� �
: ð21Þ
The kernel G1;1 ¼ G�1;�1 is given by (19). Once we have derived our boundary conditions, a few remarks are in order:

� Unlike many nonreflecting boundary conditions for continuous waves, no assumptions on the support of the data are
made. We do not assume the data to have compact support contained in the computational domain.

� The series can be truncated to a finite range of k using the decay properties of G�1;kðtÞ as jkj grows.
� When the initial data and the source are compactly supported in the computational domain, r�ðNþ1ÞðtÞ ¼ 0 and the bound-

ary conditions involve only u�N and its closest interior neighbor. Still, the boundary condition is non local in time due to
the presence of an integral term.

� The source r�ðNþ1ÞðtÞ represents the interaction with the external medium. The expressions for r�ðNþ1ÞðtÞ in (21) can be
replaced with the solution of finite element or meshless schemes for the outer problems, which can be more efficient
in higher dimensions. We would obtain an hybrid multiscale scheme coupling an atomic model with a discretized
continuum description.

� Friction terms @u�N
@t are commonly introduced in the equations near the extremes of the lattices, in an heuristic attempt

(often unsuccessful or uncontrolled) to reduce reflections produced by arbitrary choices of the boundary conditions. Time
derivatives are then discretized as linear combinations of values of u�N at earlier times. The integral term appearing in our
boundary conditions (20) is also discretized as a more complex linear combination of values of u�N at earlier times. It can
be interpreted as a friction term generated by the tails of the chain. Comparing with the approximate boundary conditions
for semiscrete hyperbolic systems proposed in [34], our nonreflecting conditions involve values at the boundary points at
previous times and not values at all the points for the current time.

� At each wall, we express u�ðNþ1Þ in terms of the data u�N . Thus, we know the differences u�ðNþ1Þ � u�N , which are discrete
versions of normal derivatives. We have computed the spatially discrete time dependent Dirichlet-to-Neumann operators
[23] in the exterior domains n < �N and n > N.

3. Numerical results

In this section we test the ability of the boundary conditions derived in the previous section to suppress reflections at
artificial boundaries.
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3.1. Discretization

The simplest schemes use a second order approximation for the time derivative:
d2unðtÞ
dt2 ¼ unðt þ hÞ � 2unðtÞ þ unðt � hÞ

h2 þ Oðh2Þ: ð22Þ
Since the kernels G�1;�1ðt � sÞ oscillate and decay as t � s grows [5], we may truncate the integrals appearing in (20) to an
interval ½t � s; t�; s P 0, and apply the composite trapezoidal rule (order 2) to discretize the resulting integrals. The final
scheme takes the form:
ujþ1
n � 2uj

n þ uj�1
n ¼ h2D uj

nþ1 � 2uj
n þ uj

n�1

� �
� Ah2uj

n; �N < n < N; ð23Þ

ujþ1
�N � 2uj

�N þ uj�1
�N ¼ h2D uj

�ðN�1Þ � 2uj
�N þ uj

�ðNþ1Þ

� �
� Ah2uj

�N ; ð24Þ
for j ¼ 1;2; . . ., where
uj
�ðNþ1Þ ¼ Dh

Xminðj;nsÞ

‘¼0

c‘Kðt‘Þu�Nðtj � t‘Þ
 !

þ rj
�ðNþ1Þ; ð25Þ
with s ¼ nsh; rj
n ¼ rnðtjÞ; c0 ¼ cns ¼ 1=2; c‘ ¼ 1; ‘ ¼ 1; . . . ;ns � 1 and t‘ ¼ ‘h; ‘ ¼ 0;1;2; . . .. If we compute the integrals over

½0; tj�, then ns ¼ j and s ¼ tj grow from one step to the next. Otherwise, they are fixed.
The weights Kðt‘Þ ¼ G�1;�1ðt‘Þ; ‘ ¼ 0; . . . ;ns, are evaluated once and then stored. These weights must be calculated with

enough precision to avoid spurious oscillations or instabilities. Notice that the integrand in (19) is oscillatory, and the fre-
quency of the oscillations increases with t‘. As a result, Kðt‘Þ tends to zero as t‘ grows. We have used Matlab packages based
on adaptive Lobatto quadrature with tolerance 10�6. The precision should be adapted to the cut-off value s, to avoid loosing
all the significative digits past a certain time. This is the most expensive step in our scheme. Once the weights have been
stored, the cost is reduced to evaluating (23)–(25).

The presence of integrals makes constant time step schemes a natural choice for this problem. However, the evaluation of
a convolution integral at each time step might render the cost too high. The decaying nature of our kernels prevents this. In
our tests, ns is small enough to allow for a fast straightforward computation of the sums in (25). The higher order schemes
developed in Section 3.3 reduce the number of convolutions to be computed by increasing the time step. Other acceleration
strategies are discussed in Section 4.1.4.
3.2. Numerical tests

A series of numerical experiments have been performed to test the efficiency of our boundary conditions. We compare
solutions of (2) computed in two lattices of increasing size ½�N1;N1�; ½�N2;N2�;N1 � N2, the first one being several times
smaller than the second one. In the biggest lattice we impose zero Dirichlet boundary conditions. We use gaussians with
compact support in the smaller lattice as initial data, so that there is no interaction with the boundary of the large lattice
during the computing time and the solution can be taken as exact. Numerical solutions are generated with the scheme
(23)–(24) and boundary conditions u�ðN2þ1Þ ¼ 0.

Fig. 3 shows a sequence of snapshots superimposing solutions obtained in the small lattice for three different boundary
conditions and the reference ‘exact’ solution when A ¼ 0. We solve (23)–(24) for initial data unð0Þ ¼ e�n2 and u0nð0Þ ¼ 0. For
zero Dirichlet boundary conditions the wave is reflected inside the computational domain, reaches its center and goes back
to the boundary, giving rise to successive reflections. The nonreflecting conditions ut � ux ¼ 0 for the wave equation

utt � uxx ¼ 0 are discretized at each boundary as ujþ1
�N � uj

�N ¼ h
ffiffiffiffi
D
p

�uj
�N þ uj

�ðN�1Þ

� �
, choosing h and 1ffiffiffi

D
p as time step and spa-

tial step respectively. Again, a wave of certain magnitude is reflected. The smaller D becomes, the worse these conditions
behave. Our nonreflecting boundary condition (20) discretized according to the scheme (23)–(25) suppresses the reflections
for s large. Our tests show that the spatial patterns agree with the ‘exact’ solution if s P 10. For small s 6 1, a reflection at
the boundary is observed, similar to the reflection generated with Dirichlet boundary conditions. Its magnitude diminishes
as s gets close to 1. For scattered ranges of intermediate s 2 ð1;10Þ a long time instability is detected. The evolution is ini-
tially stable. The outgoing waves of larger amplitude cross the boundary without departing from the true solution. Small
amplitude oscillations about zero remain. Past a certain time (50–80 in our tests), the mean of the oscillations becomes po-

sitive and uj
n looks like a positive constant over the computational domain, which grows away from the true solution. We

discuss the possible causes of this behavior in Section 3.4.
We compare the quality of the numerical solutions for different parameters by plotting reflexivity coefficients. Let v j

n be
the exact solution in the small lattice and uj

n an approximate solution generated with artificial boundary conditions. We de-
fine the reflexivity coefficients NðtÞ and EðtÞ in terms of the euclidean norm of the difference and the relative error in the
approximate energies:
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uj
n � v j

n

			 			2
r

2N1 þ 1
; ð26Þ

EðtjÞ ¼
E uj

n

� �
� E v j

n

� �			 			
E v0

n


 � ; E uj
n


 �
¼ 1

2

X
�N16n6N1

ujþ1
n � uj�1

n

2h

					
					
2

þ D
2

X
�N16n6N1

uj
n � uj

n�1

			 			2: ð27Þ
Fig. 4 plots these coefficients for (23)–(25) when s ¼ t (no truncation), s ¼ 50 and s ¼ 10. The magnitude of the reflec-
tions decreases as s increases. Notice that jKðtÞj 6 3� 10�2 when t P 10 and jKðtÞj 6 3� 10�3 if t P 50. The smallest reflex-
ivity coefficients are obtained when t ¼ s. For s ¼ 10;50, the reflexivity coefficients are small but they increase as time
grows.

Fig. 5 shows the evolution of the initial gaussian with A ¼ 1 and s ¼ 50. The spatial patterns are almost undistinguishable
when s ¼ 50 and s ¼ t, for the time we have computed. As s decreases, spurious small amplitude oscillations develop for
large times. Reflexivity coefficients are plotted in Fig. 6. The appearance of spurious oscillations distorts Fig. 6(e) and (f)
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Fig. 4. Reflexivity coefficients for the second order scheme (23)–(25): (a) and (b) s ¼ t, (c) and (d) s ¼ 50, (e) and (f) s ¼ 10. Parameter values are
D ¼ 1;A ¼ 0;h ¼ 10�2;N1 ¼ 25;N2 ¼ 125.
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for s ¼ 10. Increasing s delays and reduces this effect. No instabilities similar to the one encountered when A ¼ 0 have been
detected.
3.3. Higher order schemes

High order schemes allow to use larger time steps without amplifying the magnitude of the reflections or increase the
precision without recalculating the weights Kðt‘Þ. Let us write (2) as a first order system:
u0n ¼ vn; �N 6 n 6 N; t > 0; ð28Þ
v 0n ¼ Dðunþ1 � 2un þ un�1Þ � Aun ¼ f ðunÞ; ð29Þ
with u�ðNþ1Þ defined in (21). We have designed a fourth order scheme combining a symplectic Runge–Kutta method of order
four [36] to integrate (28) and (29):
g1 ¼ 0; g2 ¼ 0:2052; g3 ¼ 0:6082; g4 ¼ 0:487; g5 ¼ 1;
b1 ¼ 0:0617; b2 ¼ 0:339; b3 ¼ 0:6148; b4 ¼ �0:1405; b5 ¼ 0:125;
bi ¼ bið1� giÞ; i ¼ 1; . . . ;5;
ai;j ¼ bjðgi � gjÞ; i ¼ 2; . . . ;5; j ¼ 1; . . . ; i� 1;

q1;n ¼ uj
n þ hg1v j

n; c1;n ¼ f ðq1;nÞ;

ql;n ¼ uj
n þ hglv j

n þ h2
Xl�1

i¼1

al;ici;n; cl;n ¼ f ðql;nÞ; l ¼ 2; . . . ;5;

ujþ1
n ¼ uj

n þ hv j
n þ h2

X5

i¼1

bici;n; v jþ1
n ¼ v j

n þ h
X5

i¼1

bici;n;
and the quadrature formula (25), with the coefficients of the composite Simpson rule c0 ¼ 1
3 ; c2j�1 ¼ 4

3 ; c2j ¼ 2
3 ; j ¼ 1; . . . ;

ns � 1; cns ¼ 1
3, to compute the integrals in (21). As Figs. 7 and 4 show, the quality of the solutions generated by the fourth

and second order schemes when h ¼ 10�1 and h ¼ 10�2, respectively, is similar. The magnitude of the truncation error is also
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enough for the truncation error to drive the solution away from zero. When s P s1, the truncation error remains small en-
ough to avoid this. Note that (2) does not admit solutions of the form unðtÞ ¼ et when A – 0.

4. Extension to higher dimensions

Let us consider a simple cubic crystal lattice. We label its atoms using three integer parameters n ¼ ðn1;n2;n3Þ. The dis-
placement of each atom from its equilibrium position is u ¼ ðunÞ. We denote the crystal energy by UðuÞ. The nonlinear
dimensionless equations of motion are:
M
d2un

dt2 ¼ �
@UðuÞ
@un

: ð30Þ



1890 A. Carpio, B. Tapiador / Journal of Computational Physics 229 (2010) 1879–1896
Here, un is the dimensionless displacement vector of the atom labeled as n. M is its dimensionless mass. Often,
UðuÞ ¼ 1

2

P
n0–nV un0 � unj jð Þ, for some interatomic potential V. If all crystal defects are concentrated in a small region, at a cer-

tain distance the equations of motion may be linearized and localized. Using nearest neighbor interactions, the vectorial
equations of motion are:
M
d2un

dt2 ¼
X

n1�n01j j61; n2�n02j j61; n3�n03j j61

Cn�n0un0 ð31Þ
with dimensionless coefficient matrices Cn�n0 related to the elastic constants of the lattice: Cn�n0 ¼ � @2UðuÞ
@un0 @un

			
u¼0

.

4.1. A spatially discrete wave equation

For a discrete wave equation the matrices Cn�n0 are particularly simple:
d2un

dt2 ¼ D
X

jn�n0 j61

un0 � unð Þ ð32Þ
with D > 0;n ¼ ðn1;n2;n3Þ and n0 ¼ n01;n
0
2; n

0
3


 �
. The system uncouples and we can work component-wise. We truncate the

computational domain to a finite box, placing artificial boundaries at fjn1j ¼ N1; jn2j ¼ N2; jn3j ¼ N3g, and look for a nonre-
flecting boundary condition. Again, the first step is to compute the Green’s function for the initial value problem in the whole
space.

4.1.1. Green’s functions
We wish to find an integral expression for the solution of:
d2un

dt2 ¼ D
X

jn�n0 j61

un0 � unð Þ þ fn; ð33Þ

unð0Þ ¼ u0
n;

dun

dt
ð0Þ ¼ u1

n: ð34Þ
The associated Green’s functions can be found following the strategy described in Section 2.1: remove the difference oper-
ator using discrete Fourier transforms
pðh; tÞ ¼
X

n

unðtÞe�in	h; f ðh; tÞ ¼
X

n

fnðtÞe�in	h; h ¼ ðh1; h2; h3Þ: ð35Þ
Differentiating p with respect to t, (33) implies that p solves (6) with xðhÞ2 ¼ 4D sin2 h1
2


 �
þ sin2 h2

2


 �
þ sin2 h3

2


 �h i
. The initial

conditions for p follow from the initial conditions for un. Again, p depends on the roots of r2 þxðhÞ2 ¼ 0 and is given by (7).
We recover un inverting the Fourier transforms to get (9). Now, n, k and h are vectors and the Green’s functions are given by:
Gn;kðtÞ ¼
Z p

�p

Z p

�p

Z p

�p

dh

ð2pÞ3
eiðn�kÞ	h

xðhÞ sinðxðhÞtÞ: ð36Þ
Discrete Klein–Gordon equations can be handled modifying the expression for x: xðhÞ2 ¼ 4D sin2 h1
2


 �
þ sin2 h2

2


 �
þ

h
sin2 h3

2


 �
� þ A;A > 0, as done in Section 2. Once the Green’s functions for the initial value problem are known, we may con-

struct nonreflecting boundary conditions for a half-space.

4.1.2. Exact nonreflecting boundary conditions for a half-space
Let us place an artificial boundary at n1 ¼ 0 and try to solve (33) for n1 P 0. A boundary condition to compute

u0;mðtÞ;m ¼ ðn2;n3Þ is needed. At the wall n1 ¼ 0, (33) reduces to:
d2u0;m

dt2 ¼ D
X

n01j jþjm�m0 j61

ðun0
1
;m0 � u0;mÞ þ f0;m; ð37Þ
with m0 ¼ n02;n
0
3


 �
. These equations involve the unknown values u�1;m. We must express them in terms of the values in the

half-space n1 P 0 to close the system. As in Section 2, we can find a formula for them assuming we know u0;m for all m and
solving (33)–(34) in the half-space n1 6 0, with u0;m as boundary data. This problem can be rewritten with homogeneous
boundary conditions incorporating the boundary condition in a modified source term fn1 ;m þ dn1 ;�1Du0;m. Notice that Eq.
(33) for u�1;m involves only the points u�2;m;u0;m and u�1;m0 ; jm�m0j 6 1. This allows for an odd extension
vn1 ;m ¼
un1 ;m n1 < 0
0 n1 ¼ 0
�u�n1 ;m n1 > 0;

8><
>: ð38Þ
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which solves a problem set in the whole space:
d2vn1 ;m

dt2 ¼ D
X

n1�n0
1j jþjm�m0 j61

ðvn01 ;m
0 � vn1 ;mÞ þ gn1 ;m; ð39Þ

vn1 ;mð0Þ ¼ v0
n1 ;m

;
dvn1 ;m

dt
ð0Þ ¼ v1

n1 ;m
: ð40Þ
The initial data v0
n1 ;m

and v1
n1 ;m

are odd extensions of u0
n1 ;m

and u1
n1 ;m

defined as in (38). The source gn1 ;m is constructed with
a similar odd extension of gn1 ;m ¼ fn1 ;m þ Ddn1 ;�1u0;m, n1 < 0, to positive n1 (see (15) and (56)). Expressing vn1 ;m in terms of
Green’s functions as in Section 4.1.1 and exploiting the symmetry of the data, we find an expression for u�1;m:
u�1;mðtÞ ¼ r�1;mðtÞ þ D
X

m02Z2

Z t

0
Gð�1;mÞ;ð�1;m0 Þðt � sÞu0;m0 ðsÞds; ð41Þ

r�1;mðtÞ ¼
X

n01<0;m02Z2

Gð�1;mÞ; n0
1
;m0ð ÞðtÞ

dun01 ;m
0

dt
ð0Þ þ

dGð�1;mÞ; n01 ;m
0ð Þ

dt
ðtÞun01 ;m

0 ð0Þ þ
Z t

0
Gð�1;mÞ; n0

1
;m0ð Þðt � sÞfn01 ;m

0 ðsÞds

" #
; ð42Þ
where Gðn1 ;mÞ; n01 ;m
0ð Þ ¼ Gðn1 ;mÞ; n01 ;m

0ð Þ � Gðn1 ;mÞ; �n01 ;m
0ð Þ is the Green’s function for the half-space n1 < 0 with zero boundary con-

dition n1 ¼ 0. The source term r�1;mðtÞ represents the contribution of the data in the outer region and its impact on the
dynamics inside the truncated computational domain.

The boundary condition at the wall n1 ¼ 0 is given by (37) and (41). Boundary conditions for other planes are computed in
a similar way. Conditions (37) and (41) apply in 2D replacing m ¼ ðn2;n3Þ by m ¼ n2.

4.1.3. Approximate boundary conditions in a finite box
Once the nonreflecting boundary condition for a half-space is known, we may obtain approximate boundary conditions

for boxes. Let n1 ¼ �N1;n2 ¼ �N2 and n3 ¼ �N3 be the walls of a 3D cubic box. On each wall, we impose a truncated non-
reflecting boundary condition for the corresponding half-space. The infinite sum in (41) can be approximated by a finite sum
using the decay of Gð�1;mÞ;ð�1;m0 ÞðtÞ as jm�m0j grows. We only keep the terms for which jm�m0j 6 M. The integral over ½0; t�
can also be approximated by an integral over ½t � s; t�, choosing s P 0 large enough. If we want to use this type of boundary
conditions on the walls n1 ¼ �N1 of the box, (41) becomes:
u�ðN1þ1Þ;mðtÞ ¼ r�ðN1þ1Þ;mðtÞ þ D
X
m02I

Z t

ðt�sÞþ
Gð�1;mÞ;ð�1;m0Þðt � sÞu�N1 ;m0 ðsÞds; ð43Þ
where I ¼ n02;n
0
3


 �
j n02
		 		 6 N2; n03

		 		 6 N3; n2 � n02
		 		 6 M; n3 � n03

		 		 6 M
� 

. These conditions cease to be exact because of the
truncation error, which is larger at the edges and the corners.

The same strategy can be adopted for 2D cubic lattices. The approximate boundary conditions on the walls n1 ¼ �N1 are
then:
d2u�N1 ;n2

dt2 ¼ D
X

�N1�n0
1j jþ n2�n0

2j j61

ðun01 ;n
0
2
� u�N1 ;n2 Þ þ f�N1 ;n2 ; ð44Þ

u�ðN1þ1Þ;n2 ðtÞ ¼ r�ðN1þ1Þ;n2 ðtÞ þ D
X
n022I

Z t

ðt�sÞþ
K�n2�n02

ðt � sÞu�N1 ;n02
ðsÞds; ð45Þ

r�ðN1þ1Þ;n2 ðtÞ ¼
X
m02R

K�n0
1
;n2�n0

2
ðtÞ

dun01 ;n
0
2

dt
ð0Þ þ

dK�n01 ;n2�n02

dt
ðtÞun01 ;n

0
2
ð0Þ þ

Z t

ðt�sÞþ
K�n0

1
;n2�n0

2
ðt � sÞfn01 ;n

0
2
ðsÞds

" #
; ð46Þ
where
I ¼ n02 j n02
		 		 6 N2; n2 � n02

		 		 6 M
� 

;

R ¼ n01;n
0
2


 �
j N1 � n01

 �

< 0; n2 � n02
		 		 6 M; �1þ n01 � N1


 �		 		 6 M
� 

;

K�n01 ;n2�n02
¼ Gð�1;n2Þ; � n0

1
�N1ð Þ;n02ð Þ; K�n2�n02

¼ Gð�1;n2Þ; �1;n0
2ð Þ;

Gðn1 ;n2Þ; n0
1
;n0

2ð Þ ¼ Gðn1 ;n2Þ; n0
1
;n0

2ð Þ � Gðn1 ;n2Þ; �n0
1
;n0

2ð Þ;
and Gn;n0 ðtÞ is the two dimensional version of (36). The boundary conditions on the walls n2 ¼ �N1 are similar, interchanging
the roles of the first and second subscripts and replacing n2;n02 with n1;n01.

4.1.4. Numerical scheme
We have used these boundary conditions to simulate the evolution of a gaussian in a 2D cubic square lattice with the

dynamics (32). Conditions (44) and (45) apply on the artificial boundaries n1 ¼ �N with r�ðNþ1Þ ¼ 0. Equivalent formulas
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(interchanging the roles of n1 and n2) are imposed on the artificial boundaries n2 ¼ �N. The kernels K�n2�n02
ðtÞ, defined by the

expressions
Fig. 8.
M ¼ 2 (
Other p
K�n2�n02
ðtÞ ¼

Z p

�p

Z p

�p

dh1dh2

ð2pÞ2
ð1� e�i2h1 Þei n2�n02ð Þh2

xðhÞ sinðxðhÞtÞ; ð47Þ
are evaluated at the grid points t‘ ¼ ‘h;0 6 l 6 L; Lh ¼ T , and stored from the start. They are computed using adaptive Lobatto
quadrature with tolerance 10�6. By symmetry, the kernels for the walls n1 ¼ N and n2 ¼ N or n1 ¼ �N and n2 ¼ �N agree.

We discretize (32) using the second order scheme described in Section 3, generalized to two dimensions. Time derivatives
are discretized using (22). The time integrals in (44) and (45) are truncated to intervals ½t � s; t�, s P 0, and approximated by
composite trapezoidal rules. Alternatively, we might proceed as in Section 3.3 to reduce the number of time steps. At each
time step we have to evaluate 8N discrete convolutions of the form

Pns
‘¼0gðt‘Þwðtj � t‘Þ, with gð0Þ ¼ 0;nsh ¼ s. Reasonable

results are obtained for small values of N; s and M without turning to acceleration techniques. For large lattices or cut-off
values s and M, we may resort to fast Fourier transforms or parallelize the evaluation of convolutions to speed up the
process.

Nonreflecting boundary conditions for wave equations usually give rise to discrete convolutions where the Laplace trans-
form of gðtÞ is known and has a simple explicit form. Specific acceleration techniques to evaluate such sums are discussed in
[32]. It is unclear whether similar strategies might be applied with success in our case. We do not need to compute convo-
lutions with a large or increasing number of terms because we exploit the time decay of our kernels to truncate the time
integrals over ½0; t� to integrals over intervals of fixed length s. Also, we do not have simple explicit forms for the Laplace
transforms of the kernels. We evaluate the kernels directly from the start.

4.1.5. Numerical results
To calibrate reasonable choices of the cut-off parameters s and M in (45) we first simulate the evolution of an initial

gaussian in a half-space. The left wall is located at N ¼ �10. Fig. 8 plots the reflexivity coefficient
NðtjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�N6n1 ;n26N uj

n1 ;n2
� v j

n1 ;n2

			 			2
r

ð2N þ 1Þ2
; ð48Þ
for different M and s. uj
n1 ;n2

is generated using data u0
n1 ;n2
¼ e�n2

1�n2
2 ;u1

n1 ;n2
¼ 0 in a truncated domain and v j

n1 ;n2
is the reference

‘exact’ solution. For each choice of s, there is a threshold value of M above which no improvement is to be expected. This
threshold is about 1 for s ¼ 1;5 for s ¼ 5. . . Similarly, for each fixed M, the reflexivity coefficients agree if s is large enough.
This happens if s is larger than 5;10;10;20 . . . for M ¼ 1;2;5;10 . . ., respectively. For each M, there seems to be a critical va-
lue of s above which the reflexivity coefficient does not improve and may even worsen. The best reflexivity coefficients for
M ¼ 5;10, seem to correspond to s ¼ 5;10, respectively.

The reflexivity coefficients allow to compare the magnitude of the reflexions for different s and M. To check the quality of
the solutions, we visualize the time evolution of the spatial patterns. Fig. 9 represents the evolution of the wave when s ¼ 5,
for decreasing M. Snapshots (g)–(h) show a small reflected wave when M ¼ 1. If M ¼ 2, this reflected wave persists, see
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Reflexivity coefficients for half-spaces. Thick lines correspond to s ¼ 10 for different values of the cut-off value M: M ¼ 10 (solid), M ¼ 5 (dashed),
dash-dotted) and M ¼ 1 (dotted). Thin lines correspond to s ¼ 5 for M ¼ 5 and M ¼ 2. Crosses mark the reflexivity coefficient when M ¼ 1 and s ¼ 1.
arameter values are h ¼ 10�2 and D ¼ 1.
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Fig. 9(e)–(f). When M ¼ 5, no reflected wave is seen in Fig. 9(a)–(d). NðtÞ is of order 10�5. This set of parameters is acceptable
because no reflected waves are appreciated at first sight. When M ¼ 2 or M ¼ 1;NðtÞ has orders 4� 10�5 and 6� 10�5,
respectively. Decreasing s, the magnitude of the reflected wave increases, until it becomes similar to the one generated with
zero Dirichlet boundary conditions (see Fig. 2(g)–(h)) and NðtÞ is of order 10�3.

The test in the half-space suggests the choice M ¼ 5 and s ¼ 5 for square lattices. Fig. 2(a)–(f) shows the evolution of the
gaussian with walls located at n1 ¼ �10 and n2 ¼ �10. It is almost undistinguishable from the true solution, especially while
the larger waves are exiting the lattice. Once the relevant fronts have left, the remaining small oscillations are affected by
errors at the corners. The patterns do not worsen significantly by lowering M to 2 or 1, and the cost is much smaller.
Fig. 10 shows that for a given lattice size, the reflections cannot be reduced below some level (which decreases as the size
Fig. 9. Outgoing wave in a half-space limited by a wall placed at n1 ¼ �10, computed using (44)–(45) and decreasing M: (a) M ¼ 5; t ¼ 10, (b) M ¼ 5; t ¼ 15,
(c) M ¼ 5; t ¼ 20, (d) M ¼ 5; t ¼ 25, (e) M ¼ 2; t ¼ 20, (f) M ¼ 2; t ¼ 25, (g) M ¼ 1; t ¼ 20, (h) M ¼ 1; t ¼ 25. Other parameter values are
h ¼ 10�2; s ¼ 5;D ¼ 1.



of the lattice increases) by varying s and M due to the corners. Notice that NðtÞ increases by a factor 10 compared to Fig. 8.
Unlike the one dimensional case, we have detected no instabilities in our tests.

4.2. General case

To solve (31) we truncate the computational domain to a box, placing artificial boundaries at jn1j ¼ N1; jn2j ¼ N2; jn3j ¼ N3,
as in the previous section. Let us first compute the Green’s function of the infinite initial value problem.

4.2.1. Green’s functions
To compute the Green’s functions of the linearized operator (31) we follow Section 4.1.1. Let us consider the initial value

problem
M
d2un

dt2 ¼
X

n1�n01j j61; n2�n02j j61; n3�n03j j61

Cn�n0un0 þ fn; ð49Þ

unð0Þ ¼ u0
n; u0nð0Þ ¼ u1

n: ð50Þ
Now, fn and un are vectors and Cn matrices. The discrete transform p solves
M
d2p

dt2 ðh; tÞ þ AðhÞpðh; tÞ ¼ fðh; tÞ; AðhÞ ¼
X

jn1 j61;jn2 j61;jn3 j61

Cne�ih	n: ð51Þ
Notice that the coefficient matrix AðhÞ does not depend on time. To find the general solution, we take the Laplace transform
in time:
Lpðh; sÞ ¼ ðMs2I� AðhÞÞ�1ðLfðh; sÞ þM
dp
dt
ðh;0Þ þ sMpðh; 0ÞÞ: ð52Þ
Setting LG0ðsÞ ¼ ðMs2I� AðhÞÞ�1
; LG1ðsÞ ¼ sðMs2I� AðhÞÞ�1 ¼ LG00ðsÞ, and inverting the Laplace transform, we find
pðh; tÞ ¼ M
dG0

dt
ðtÞpðh; 0Þ þMG0ðtÞ

dp
dt
ðh;0Þ þ

Z t

0
G0ðt � sÞfðh; sÞds: ð53Þ
Inverting the discrete Fourier transform we get (9) with:
Gn;kðtÞ ¼
Z p

�p

Z p

�p

Z p

�p

dh

ð2pÞ3
eiðn�kÞ	hG0ðsÞds: ð54Þ
4.2.2. Exact nonreflecting boundary conditions for a half-space
Once we know the Green’s function, a boundary condition for a half-space is obtained following Section 4.1.2, with small

adjustments. We locate an artificial boundary at n1 ¼ 0. To solve (31) when n1 P 0, a boundary condition is needed for
u0;mðtÞ;m ¼ ðn2;n3Þ. On the wall n1 ¼ 0
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M
d2u0;m

dt2 ¼
X

n0
1j j61; n2�n0

2j j61; n3�n0
3j j61

Cð0;mÞ�n0un0 þ f0;m: ð55Þ
Expressing u�1;m0 as a function of u0;m00 is enough to close the system. Due to the cross terms appearing in (49) it is not true
in general that the odd extension v of u defined in (38) solves (49) with data obtained as odd extensions of the original data,
as in (38)–(40). We must correct gn1 ;m at n1 ¼ 0:
gn1 ;m ¼
fn1 ;m þ dn1 ;�1amðtÞ; n1 < 0
bmðtÞ; n1 ¼ 0
�g�n1 ;m; n1 > 0

8><
>: ð56Þ

amðtÞ ¼
X

n2�n02j j61; n3�n03j j61

Cð�1;mÞ�ð0;m0Þu0;m0 ;

bmðtÞ ¼
X

n2�n02j j61; n3�n03j j61

½Cð0;mÞ�ð�1;m0 Þ � Cð0;mÞ�ð1;m0 Þ�u�1;m0 ;
ð57Þ
where m0 ¼ n02;n
0
3


 �
. Solving the extended problem in the whole space with this new definition of gn1 ;m, we find un1 ;m;n1 < 0,

as a function of u0;m0 ;u�1;m0 :
un1 ;mðtÞ ¼
Z t

0

X
m02Z2

½Gn;ð�1;m0 Þðt � sÞam0 ðsÞ þ Gn;ð0;m0Þðt � sÞbm0 ðsÞ�dsþ rn1 ;mðtÞ; ð58Þ

rn1 ;mðtÞ ¼
X

n01<0;m02Z2

Gn;n0 ðtÞ
dun0

dt
ð0Þ þ dGn;n0

dt
ðtÞun0 ð0Þ þ

Z t

0
Gn;n0 ðt � sÞfn0 ðsÞds

� �
; ð59Þ
where Gn;n0 ;n ¼ ðn1;mÞ, is the Green’s function for the half-space n1 < 0 with zero boundary condition on the wall. When
Cð0þ1;m�m0 Þ ¼ Cð0�1;m�m0 Þ;bm ¼ 0 and (58) gives u�1;m as a function of u0;m0 , closing (55). Again, we have a boundary condition
with the structure (37), (41), and (42). If bm – 0, (58) involves values of u�1;m0 in the interval ½0; t�. Notice that Gn;n0 ð0Þ ¼ 0. In
practice, only known values of u�1;m0 for times s 2 ½0; tÞ are involved. This allows to compute u�1;mðtÞ and close the truncated
system in the half space n1 > 0 as explained in the next subsection.

4.2.3. Second order scheme
To solve (31) in the half-space n1 > 0, we discretize the time derivatives appearing in the system (31) and the boundary

condition (55) by means of (22). The integrals in (58) are discretized by the composite trapezoidal rule:
uj
�1;m ¼

X
n02j j6N2 ; n03j j6N3

Xj

i¼0

Gð�1;mÞ;ð�1;m0 ÞðtiÞam0 ðtj � tiÞ þ Gð�1;mÞ;ð0;m0 ÞðtiÞbm0 ðtj � tiÞ
� �

þ r�1;mðtjÞ: ð60Þ
The values am0 ðtjÞ and bm0 ðtjÞ are not used because Gn;n0 ð0Þ ¼ 0. Thus, uj
�1;m is expressed in terms of previously stored val-

ues: ui
�1;m0 and ui

0;m0 for j < i. In a finite box, we must truncate and shift (60) as explained in Section 4.1.3.

5. Conclusions

We have found nonreflecting boundary conditions for lattice models which include spatially discrete wave and Klein–
Gordon equations. These boundary conditions may be extended to lattice models for general cubic crystals. Our boundary
conditions are non local in time. We propose a discretization scheme which produces discretely absorbing boundary condi-
tions. Numerical tests illustrate the ability of these boundary conditions to minimize reflections at boundary. They can either
be used as artificial boundary conditions to truncate a computational domain or as transmission conditions to couple two
domains with different dynamics and design hybrid multiscale schemes.
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